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Abstract
Transformation coefficients between standard bases for irreducible
representations of the Brauer centralizer algebra Bf (x) and split bases adapted
to the Bf1(x) × Bf2(x) ⊂ Bf (x) subalgebra (f1 + f2 = f ) are considered.
After providing the suitable combinatorial background, based on the definition
of the i-coupling relation on nodes of the subduction grid, we introduce a
generalized version of the subduction graph which extends the one given in
Chilla (2006 J. Phys. A: Math. Gen. 39 7657) for symmetric groups. Thus,
we can describe the structure of the subduction system arising from the linear
method and give an outline of the form of the solution space. An ordering
relation on the grid is also given and then, as in the case of symmetric groups,
the choices of the phases and of the free factors governing the multiplicity
separations are discussed.

PACS numbers: 02.20.−a, 02.10.Ud, 02.10.Ox
Mathematics Subject Classification: 20C35, 05E99

1. Motivations

Racah–Wigner calculus for classical Lie groups (unitary, orthogonal and symplectic groups)
plays a fundamental role in many areas of physics and chemistry. Orthogonal and symplectic
Racah–Wigner calculus arises, for example, in the description of symmetrized orbitals in
quantum chemistry and in fermion and boson many-body theory [1], grand unification
theories for elementary particles [2], supergravity [3], interacting boson and fermion dynamical
symmetry models for nuclei [4, 5], nuclear symplectic models [6, 7] and so on.

In particular, Racah coefficients and other recoupling coefficients of unitary SU(n),
orthogonal SO(n) and symplectic Sp(2m) groups of different ranks are quite useful when
calculating energy levels and transition rates in atomic, molecular and nuclear theory (for
example, in connection with the Jahn–Teller effect and structural analysis of atomic shells, see
Judd and co-workers [8, 9] and, for a description of multi-bosonic and multi-fermionic systems
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and applications in the microscopic nuclear theory, consider [10, 11]), and in conformal field
theory [12].

There are many approaches to the Racah coefficients, but the problem is that there is
not a general method for treating various kinds of coupling and recoupling issues. Any
given technique applies only to a particular problem and for a particular group. Not only the
techniques for dealing with unitary, orthogonal and symplectic groups all drastically differ
from each other, but the methods for finding the various Wigner coefficients also vary from
each other. Furthermore, analytical expressions are difficult to come by for the general Lie
groups, mainly because there is a multiplicity problem in the reduction of Kronecker products
of pair of irreducible representations. Some missing labels need to be added in, for which a
procedure is often difficult to do systematically. Finally, although several efficient computer
codes and numerical procedures exist, they often do not permit any insight in the mathematical
structure of such coefficients and, however, we still need a general and efficient closed
algorithm.

The goal to provide a systematic and comprehensive approach to deal with the structure of
coupling and recoupling coefficients for classical Lie groups is not been achieved. However,
the most promising strategy for this purpose seems to be the one building on the well-known
and tight connection between symmetric and unitary groups which is called Schur–Weyl
duality in the literature and which was first pointed out by Schur in the beginning of the 20th
century [13]. This observation was 10 years later developed by Brauer [14] who found the
full centralizer algebra for orthogonal and symplectic groups and gave the construction of the
full centralizer algebras for the classical series of the Lie groups.

Kramer [15] used explicit transformations between the bases defined in terms of different
symmetric group chains (so-called Gelfand–Tzetlin chains) to define his f symbol (our
subduction factor) for a symmetric group. He showed that such symbols were equivalent
to recoupling coefficients (6j and 9j symbols) for any unitary group and furthermore that
f symbols were also equal to coupling coefficients for U(p + q) ⊃ U(p) × U(q). Later
[16] these results were generalized to Brauer centralizer algebras and to the corresponding
ortho-symplectic groups, making the problem of finding coupling and recoupling coefficients
for classical Lie groups equivalent to the subduction problem for centralizer algebras.

In this paper, we choose an algebraic approach to the subduction problem in Brauer
algebras Bf (x) ↓ Bf1(x)×Bf2(x) (f1 +f2 = f ) and we provide a combinatorial description
of the equation system arisen from the linear equation method [17]. By solving the subduction
problem for such centralizer algebras, one has the way for a unified approach to the coupling
and recoupling issues in classical Lie groups.

Following the layout of [18], in section 2, we give the irreducible representation of
Brauer algebras and, by introducing the concept of permutation lattice, we present the explicit
action of the generators on the invariant irreducible modules. In section 3, we provide the
explicit form for the subduction equations and, in section 4, we link them to the concept
of a subduction graph which generalizes the one given in [18]. By using the subduction
graph approach, in section 5 we are able to describe the structure of the solution space
for the subduction problem. We recognize that the subduction space can be built on four
typical configurations in the i-layer: the crossing, the horizontal and vertical bridges and
the singlet. In section 6, we discuss the general orthonormalized form for the subduction
coefficients and we define a suitable ordering relation on permutation lattices and on the
grid (and thus on the set of the subduction coefficients) which is necessary to fix the choice
of the phases (for instance, the Young–Yamanouchi phase convention) and of the free factors
governing the multiplicity separations. Finally, in section 7, some main perspectives are briefly
discussed.
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2. Irreducible representations of Brauer algebras

The Brauer algebra Bf (n) is algebraically defined by the mean of 2f − 2 generators
{g1, g2, . . . , gf −1, e1, e2, . . . , ef −1} satisfying the following relations [19]:

gigi+1gi = gi+1gigi+1 (2.1)

gigj = gjgi with |i − j | � 2 (2.2)

eigi = ei (2.3)

eigi−1ei = ei (2.4)

e2
i = xei (2.5)

g2
i = 1. (2.6)

In an equivalent way, Bf (n) can be defined as the C(x)-span of the f-diagrams [20]. We
remark that the first f − 1 generators gi also generate the subalgebra CSf ⊂ Bf (x) (i.e. the
group algebra associated with the symmetric group Sf ).

As pointed out in [19], it is known that Bf (x) is semisimple, i.e., it is a direct sum of full
matrix algebras over C, when x is not an integer or is an integer with x � f − 1, otherwise
Bf (x) is not semisimple. Whenever B(x) is semisimple, its irreducible representation can
be labelled by a Young diagram with f, f − 2, f − 4, . . . , 1 or 0 boxes. It can be seen
that by removing the generators ef −1 and gf −1, {g1, g2, . . . , gf −2, e1, e2, . . . , ef −2} generate
Bf −1(x). By doing so repeatedly, one can establish the standard Gelfand–Tzetlin chain
Bf (x) ⊂ Bf −1(x) ⊂ · · · ⊂ B2(x). It defines the standard basis of Bf (x). Let ϒf be the
set of all Young diagrams with k � f boxes such that k � 0 and f − k is even. If Bf (x) is
semisimple, it decomposes into a direct sum of full matrix algebras Bf,λ(x), where λ ∈ ϒf .
If [f, λ] is a simple Bf,λ(x) module, it decomposes as a Bf −1,λ(x) into a direct sum

[f, λ] =
⊕
µ↔λ

[f − 1, µ] (2.7)

where [f − 1, µ] is a simple Bf −1,µ(x) module and µ runs through all diagrams obtained by
removing or (if λ contains less than f boxes) adding a box to λ.

In what follows, we always assume that Bf (x) is semisimple.

2.1. Generalized tableaux

The branching rule given in (2.7) allows us to label the elements of the standard basis for an
irreducible representation (irrep) [f, λ] of the Brauer algebra Bf (x) by defining a generalized
Young tableau which is associated with the concept of Bratteli diagram [21].

A Bratteli diagram A is a graph with vertices from a collection of sets Ǎk, k � 0 and
edges that connect vertices in Ǎk to vertices in Ǎk+1. One assumes that the set Ǎ0 contains a
unique vertex denoted by ∅. It is possible that there are multiple edges connecting any two
vertices. We shall call the vertices shapes. The set Ǎk is the set of shapes on level k. If λ ∈ Ǎk

is connected by an edge to a shape µ ∈ Ǎk+1 we usually write λ � µ.
A multiplicity-free Bratteli diagram is a Bratteli diagram such that there is at most one

edge connecting any two vertices. Here, we assume that all Bratteli diagrams are multiplicity
free. In fact, the Bratteli diagrams, which are more interesting for our purposes, are multiplicity
free and arise naturally in the representation theory of centralizer algebras. In figure 1, we
show the Bratteli diagram describing the branching rule for the Gelfand–Tzetlin chain of CSf

centralizer algebras.
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Figure 1. First five levels of the Bratteli diagram describing the branching rule of CSf centralizer
algebras. Ǎk is the set of the partitions of k. So, the shapes are Young diagrams and λ ∈ Ǎk is
connected to µ ∈ Ǎk+1 by an edge if µ can be obtained from λ by adding one box.

Figure 2. First four levels of the Bratteli diagram describing the branching rule of Bf (x) centralizer
algebras. Here, the shapes are Young diagrams such that λ ∈ Ǎk is connected to µ ∈ Ǎk+1 by an
edge if µ can be obtained from λ by adding or deleting one box.

Let A be a multiplicity-free Bratteli diagram and let λ ∈ Ǎk and µ ∈ Ǎl where k < l. A
path from λ to µ is a sequence of shapes λ(i), k � i � l, P = (λ(k), λ(k+1), . . . , λ(l)) such that
λ = λ(k) � λ(k+1), . . . , λ(l) = µ and λ(i) ∈ Ǎi . A generalized tableau τ of shape (diagram) λ is
a path from ∅ to λ, σ = (λ(0), λ(1), . . . , λ(k)), such that ∅ = λ(0) � λ(1), . . . , λ(k−1) � λ(k) = λ

and λ(i) ∈ Ǎi for each 1 � i � l. The branching rule for Brauer algebras given in the previous
subsection can also be described by a suitable multiplicity-free Bratteli diagram, as shown in
figure 2.

2.2. Permutation lattices

Let W be the set of all-finite words composed of elements of Z\{0}. We define a counting
function on W as follows:

#̂w(k) = #w(k) − #w(−k), (2.8)

where #w(k) represents the number of times that k ∈ Z\{0} appears in the word w.
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Observe that, if w is the empty word ∅, #w(k) vanishes by definition for all k ∈ Z\{0}.
Denoting by w(i) the word obtained from w only considering the first i elements and neglecting
the other ones (note that if w is a word composed of f elements then w(f ) = w), we give the
following definition:

Definition 1. A permutation lattice of order f is a word w composed of f elements such that

#̂w(i) (1) � #̂w(i) (2) � #̂w(i) (3) � · · · � 0 (2.9)

for all 1 � i � f . The tuple λ = [#̂w(1), #̂w(2), #̂w(3), . . . , #̂w(l)], where #̂w(l) is the last
element different from zero in the sequence (2.9), is called shape or diagram of w.

For instance, the word w = (1, 1, 2,−1, 1,−2, 2) is a permutation lattice of order 7
with diagram [2, 1], but v = (1, 2, 1,−1, 2, 1, 3) is not a permutation lattice because
#̂v(5) (1) � #̂v(5) (2).

We observe that if w has positive elements only, the previous definition of permutation
lattice becomes the usual one given, for example, in [22]. Furthermore, it is naturally related to
the definition of the Young–Yamanouchi symbol, for a standard Young tableau, which is given
in the following manner. Locate the box containing n, the largest number in the tableau, and
remove such a box. Write the index of the row that contained that box. Repeat the procedure
for n − 1, n − 2, . . . , 2, 1. The list of integers is the Young–Yamanouchi symbol.

2.3. Labelling for the Gelfand–Tzetlin basis

For each tableau τ = (λ(0), λ(1), λ(2), . . . , λ(f −1), λ(f )), where λ(0) = ∅ and λ(f ) = λ being
the shapes, we can associate the f -tuple (or word) w(τ) = (w1, w2, . . . , wf ) as follows:

wk =




h if the Young diagram λ(k+1) is obtained from λ(k)

by adding one box to the hth row (from the top of the diagram)
−h if the Young diagram λ(k+1) is obtained from λ(k)

by deleting one box from the hth row (from the top of the diagram).

(2.10)

Building on the previous definitions, the following proposition easily holds:

Proposition 1. τ is a tableau of the Bratteli diagram for the Brauer algebra Bf (x) (see
figure 2) if and only if w(τ) is a permutation lattice of order f . Furthermore, the diagram of
τ coincides with the diagram of w(τ).

Therefore, permutation lattices provide a labelling scheme for the irreducible
representations of Brauer algebras. In fact, given the irrep [f, λ] of Bf (x), the relative
Gelfand–Tzetlin basis vectors can be labelled by all permutation lattices of order f and
diagram λ (denoted by λf if we need to specify the level f in the Bratteli diagram).

The dimensions of irreps of Bf (x), [f, λ] can be computed by using Bratteli diagrams
inductively. One can prove that the dimension formula can be expressed [19] as

dim(Bf (x); [f, λ]) = f !

(f − 2k)!(2k)!!
dim(Sf −2k; [λ]) (2.11)

where f − 2k is the number of boxes which compose the diagram λ and dim(Sf −2k; [λ])
is the dimension for the irrep [λ] of Sf −2k which can be further expressed, for example, by
Littlewood–Robinson formula for irreps of symmetric groups.

It should be noted that (2.11) provides the number of permutation lattices of order f and
diagram λ once we know the number of standard Young tableaux with diagram λ. Furthermore,
we remark that the labelling scheme and the decomposition for Bf (x) are the same as the
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corresponding quantum deformation algebras (i.e. Birman–Wenzl algebras) if the quantum
deformation parameters q and r are not roots of unity. Thus (2.11) also applies to Birman–
Wenzl algebras when q and r are not roots of unity.

2.4. Transpose permutation lattice

It is easily seen that the following proposition holds for any permutation lattice w =
(w1, w2, . . . , wf ) of order f .

Proposition 2. The word w̄ = (w̄1, w̄2, . . . , w̄f ) defined by

w̄i = #̂w(i−1) (wi) + θ(wi), (2.12)

where

θ(wi) =
{

1 if wi > 0

0 if wi < 0,
(2.13)

is a permutation lattice of order f (note that w(0) is the empty word ∅ and #̂w(0) (wi) = 0 for
all 0 � i � f ).

We call w̄ the transpose permutation lattice of w and denote it by wt . One may show the
following desired involution property:

(wt )t = w. (2.14)

Relation (2.14) generalizes the corresponding one for a standard Young tableau written
as permutation lattice.

2.5. Some combinatoric functions for permutation lattices

Following [21] and rewriting in our ‘permutation lattice language’, we define

∇i (w) = (
wt

i − wi − x
)

+ xθ(wi) (2.15)

where w = (w1, w2, . . . , wf ) is, as usual, a permutation lattice of order f and 1 � i � f .
Here x ∈ C is a parameter (the same defining Bf (x)).

Given two permutation lattices of order f, u and v, with the same diagram λ, we can
construct the ‘diamond’ function as follows:

♦i (u, v) = 	i+1(u) − 	i (v). (2.16)

We note that, if uh = vh for all h 
= i and h 
= i + 1, the following symmetry property holds:

♦i (u, v) = ♦i (v, u). (2.17)

Furthermore, the diamond function is related to the usual axial distance for standard Young
tableaux. Precisely, given a tableau σ and the associated permutation lattice w, we have that

di(w) = ♦i (w,w), (2.18)

where di(w) denotes the axial distance between the boxes i and i + 1 in the Young diagram
of σ . So, the diamond function provides a way to extend the definition of axial distance to
permutation lattices. In fact, the axial distance between i and j in the permutation lattice w

can be defined by

dij (w) =




∑j−1
h=i ♦i (w,w) if i < j

0 if i = j

− ∑i−1
h=j ♦i (w,w) if i > j.

(2.19)
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Finally, following [23], for each Young diagram λ, one can define the polynomials

Pλ(x) =
∏

(i,j)∈λ

x − 1 + d(i, j)

h(i, j)
, (2.20)

where h(i, j) is the ‘hook’ function evaluated for the box in the ith row and j th column of λ:

h(i, j) = λi + λ′
j − i − j + 1 (2.21)

and d(i, j) is given by

d(i, j) =
{

λi + λj − i − j + 1 if i � j

−λ′
i − λ′

j + i + j − 1 if i > j
(2.22)

with λi denoting the length of the ith row and λ′
j the length of the j th column in λ.

Note that the polynomial function (2.20) has the property that Pλ(2n+ 1) is the dimension
of each irreducible representation V λ of the special orthogonal group SO(2n + 1).

2.6. Explicit actions

Now we can give the explicit action [21] for the generators of Brauer algebras Bf (x) on
the Gelfand–Tzetlin basis parameterized by permutation, but first we need the following
definitions:

Definition 2. Let u = (u1, u2, . . . , uf ) and v = (v1, v2, . . . , vf ) be two permutation lattices
of order f which have the same diagram λ. We say that u is i-coupled to v (or that u and v

are i-coupled) if

uh = vh (2.23)

for all h ∈ {1, . . . , i − 1, i + 2, . . . , f } and we denote such a relation by u
i↔ v.

Definition 3. Let u = (u1, u2, . . . , uf ) and v = (v1, v2, . . . , vf ) be two i-coupled permutation
lattices. We say that u is ī-coupled to v (or that u and v are ī-coupled) if

ui = −ui+1, vi = −vi+1 (2.24)

and we denote such a relation by u
ī↔ v.

Finally, it will be useful to introduce the (i\ī)-coupling as follows: given two permutation
lattices u and v, we say that u is (i\ī)-coupled to v (or that u and w are (i\ī)-coupled) if it

results u
ī↔ v but not u

ī↔ v. We denote such a relation by u
i\ī↔ v.

Of course, the previous definitions can also be given for tableaux. We simply say that
two tableau σ and τ are i-coupled or ī-coupled if the corresponding permutation lattices w(σ)

and w(τ) are i-coupled or ī-coupled, respectively. Note that the i-coupling relation just given
is the same as the classical i-coupling relation given in [18] if σ and τ are standard Young
tableaux. In that case, which corresponds to permutation lattices with all positive elements, σ

and τ either coincide or they only differ in the exchange of the positions of i and i + 1 (see
figure 3). Unfortunately, such a representation by diagrams with boxes and numbers is not
possible for general tableaux and permutation lattices with negative elements. Thus we do not
have an analogous diagrammatic representation for ī-coupling relation.

Let [f, λ] be an irrep for the Brauer algebras Bf (x). The standard Gelfand–Tzetlin basis
for such an irrep can be parameterized by all permutation lattices w of order f and diagram λ:
{|f ; λ;w〉}. The explicit action of the Bf (x) generators gi and ei on such vectors is described
by the following theorem, which is rewritten from [21] in our notation:
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1 3 4 6 1 3 4 5

2 5 8 2 6 8

7 7

Figure 3. Example of two 5-coupling standard Young tableaux. They have the same numbers in
the corresponding boxes except for 5 and 6 which are exchanged.

Theorem 1. Let u and v be two permutation lattices of order f and diagram λ and
|f ; λ; u〉, |f ; λ; v〉 two standard basis vectors for the irrep [f, λ] of Bf (x).

• If u and v are not i-coupled, then

〈f ; λ; u|gi |f ; λ; v〉 = 〈f ; λ; u|ei |f ; λ; v〉 = 0. (2.25)

• If u and v are i-coupled but not ī-coupled, then

〈f ; λ; u|gi |f ; λ; v〉 =




1

di(u)
if u = v√

1 − 1

d2
i (u)

if u 
= v

(2.26)

and

〈f ; λ; u|ei |f ; λ; v〉 = 0, (2.27)

where di(u) = ♦i (u, u) (as in (2.18)).
• If u and v are ī-coupled, then

〈f ; λ; u|gi |f ; λ; v〉 =




1

♦i (u, u)
(1 − PY(u(i))(x)

PY(u(i−1))(x)
) if u = v

− 1

♦i (u, v)

√
PY(u(i))(x)PY(v(i))(x)

PY(u(i−1))(x)
if u 
= v

(2.28)

and

〈f ; λ; u|ei |f ; λ; v〉 =
√

PY(u(i))(x)PY(v(i))(x)

PY(u(i−1))(x)
, (2.29)

where Y (w) denotes the diagram of the permutation lattice w.

We observe that the previous theorem provides the same action for gi given in [18] if
u and v are not ī-coupled (as the case of standard Young tableaux). Furthermore, we can
easily verify that both gi and ei are Hermitian operators on the invariant irreducible modules
of Brauer algebras.

3. The subduction problem

Subduction coefficients (SDCs) for the reduction [f, λ] ↓ Bf1(x) × Bf2(x) (f1 + f2 = f )

define the basis changing matrix which makes explicit the decomposition in block-diagonal
form:

[f, λ] =
⊕
λ1,λ2

{f1, f2; λ; λ1, λ2}[f1, λ1] ⊗ [f2, λ2]. (3.1)
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Therefore, each non-standard basis vector for [f, λ] is given by the tensor product of two
standard basis vectors for the irreps [f1, λ1] and [f2, λ2]. {f1, f2; λ; λ1, λ2} denotes the
Clebsch–Gordan series which provide the multiplicity of [f1, λ1] ⊗ [f2, λ2] in [f, λ].

The irreps of Bf1(x)×Bf2(x) may be labelled by (f1, f2; λ1, λ2) with λ1 and λ2 suitable
partitions (shapes). In the same way, each element of the basis is labelled by pairs of
permutation lattices.

As in the case of subduction problem for Sf , we write the non-standard basis vectors
|f1, f2; λ1, λ2;w1, w2〉 of [f1, λ1] ⊗ [f2, λ2] in terms of the standard basis vectors |f ; λ;w〉
of [f, λ] (f1 + f2 = f ):

|f1, f2; λ1, λ2;w1, w2〉η =
∑

w∈�λ
f

|f ; λ;w〉〈f ; λ;w|f1, f2; λ1, λ2;w1, w2〉η (3.2)

where �λ
f represents the set of all permutation lattices of order f and diagram λ. Thus,

〈f ; λ;w|f1, f2; λ1, λ2;w1, w2〉η are the SDCs of [f, λ] ↓ [f1, λ1] ⊗ [f2, λ2] with given
multiplicity label η.

Again, the SDCs satisfy the following unitary conditions:∑
w

〈f ; λ;w|f1, f2; λ1, λ2;w1, w2〉η〈f ; λ;w|f1, f2; λ1, λ
′
2;w1, w

′
2〉η′ = δλ2λ

′
2
δw2w

′
2
δηη′ (3.3)

∑
λ2w2η

〈f ; λ;w|f1, f2; λ1, λ2;w1, w2〉η〈f ; λ;w′|f1, f2; λ1, λ2;w1, w2〉η = δww′ . (3.4)

3.1. Subduction system

Following the guidelines given for the subduction problem in symmetric groups, we now
construct a matrix in such a way that the SDCs are the components of the kernel basis vectors.
The dimension of such a kernel space is equal to the multiplicity for the subduction issue we
are considering.

The action of gi and ei on the non-standard basis vectors is given by

gi |f1, f2; λ1, λ2;w1, w2〉 =
{

(gi |f1; λ1;w1〉) ⊗ |f2; λ2;w2〉 if 1 � i � f1 − 1

|f1; λ1;w1〉 ⊗ (gi |f2; λ2;m2〉) if f1 + 1 � i � f − 1

(3.5)

and

ei |f1, f2; λ1, λ2;w1, w2〉 =
{

(ei |f1; λ1;w1〉) ⊗ |f2; λ2;w2〉 if 1 � i � f1 − 1

|f1; λ1;w1〉 ⊗ (ei |f2; λ2;m2〉) if f1 + 1 � i � f − 1.

(3.6)

From (3.5) and (3.6), for 1 � l � f1 − 1, we get

〈f ; λ;w|gl|f1, f2; λ1, λ2;w1, w2〉 = 〈f ; λ;w|(gl|f1; λ1;w1〉) ⊗ |f2; λ2;w2〉 (3.7)

and

〈f ; λ;w|el|f1, f2; λ1, λ2;w1, w2〉 = 〈f ; λ;w|(el|f1; λ1;w1〉) ⊗ |f2; λ2;w2〉. (3.8)

Writing |f1, f2; λ1, λ2;w1, w2〉 and gl|f1; λ1;w1〉 in the standard basis of [f, λ] and [f1, λ1],
respectively, (3.7) and (3.8) become∑
u∈	i(w)

〈f ; λ;w|gl|f ; λ; u〉〈f ; λ; u|f1, f2; λ1, λ2;w1, w2〉

=
∑

v∈	i(w1)

〈f1; λ1; v|gl|f1; λ1;w1〉〈f ; λ;w|f1, f2; λ1, λ2; v,w2〉 (3.9)
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∑
u∈	̄i (w)

〈f ; λ;w|el|f ; λ; u〉〈f ; λ; u|f1, f2; λ1, λ2;w1, w2〉

=
∑

v∈	̄i (w1)

〈f1; λ1; v|el|f1; λ1;w1〉〈f ; λ;w|f1, f2; λ1, λ2; v,w2〉 (3.10)

where 	i(w) and 	̄i(w) denote the sets of all permutation lattices which are i-coupled and
ī-coupled with w, respectively.

In an analogous way, for f1 + 1 � l � f − 1, we get

∑
u∈	i(w)

〈f ; λ;w|gl|f ; λ; u〉〈f ; λ; u|f1, f2; λ1, λ2;w1, w2〉

=
∑

v∈	i(w2)

〈f2; λ2; v|gl|f2; λ2;w2〉〈f ; λ;w|f1, f2; λ1, λ2;w1, v〉 (3.11)

∑
u∈	̄i (w)

〈f ; λ;w|el|f ; λ; u〉〈f ; λ; u|f1, f2; λ1, λ2;w1, w2〉

=
∑

v∈	̄i (w2)

〈f2; λ2; v|el|f2; λ2;w2〉〈f1, f2; λ;w|f1; λ1, λ2;w1, v〉. (3.12)

Then, once we know the explicit action of the generators of Bf1(x) × Bf2(x) on the standard
basis, (3.9)–(3.12) (written for all l ∈ {1, . . . , f1 − 1, f1 + 1, . . . , f − 1} and all permutation
lattices w,w1, w2 of order f and diagrams λ, λ1 and λ2, respectively) define a linear equation
system of the form


(λ; f1, f2; λ1, λ2)χ = 0, (3.13)

where 
(λ; f1, f2; λ1, λ2) is the subduction matrix and χ is a vector with components given
by the SDCs of [f, λ] ↓ [f1, λ1] ⊗ [f2, λ2]. Equation (3.13) is a linear equation system with
dim(Bf (x); [f, λ])·dim

(
Bf1(x); [f1, λ1]

)·dim
(
Bf2(x); [f2, λ2]

)
unknowns (the SDCs) and

2(f − 2) · dim(Bf (x); [f, λ]) · dim
(
Bf1(x); [f1, λ1]

) · dim
(
Bf2(x); [f2, λ2]

)
equations.

3.2. Explicit form of the subduction system

It will be useful to give the following definitions of i-coupling and ī-coupling on pairs of
permutation lattices:

Definition 4. Given two pairs w12 = (w1, w2) and w′
12 = (w′

1, w
′
2), each one composed of

two permutation lattices of orders f1 and f2, respectively, we say that w12 is i-coupled to w′
12

(or that w12 and w′
12 are i-coupled) when



w1
i↔ w′

1

w2 = w′
2

if 1 � i � f1 − 1

w1 = w′
1

w2
i−f1↔ w′

2

if f1 + 1 � i � f1 + f2 − 1

and we denote such a relation by w12
i↔ w′

12.
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Definition 5. Given two pairs w12 = (w1, w2) and w′
12 = (w′

1, w
′
2), each one composed of

two permutation lattices of orders f1 and f2 respectively, we say that w12 is ī-coupled to w′
12

(or that w12 and w′
12 are ī-coupled) when




w1
ī↔ w′

1

w2 = w′
2

if 1 � i � f1 − 1

w1 = w′
1

w2
i−f1↔ w′

2

if f1 + 1 � i � f1 + f2 − 1

and we denote such a relation by w12
ī↔ w′

12.

Of course, an (i\ī)-coupling relation on pairs of permutation lattices can also be defined
by

w12
i\ī↔ w′

12 ⇐⇒




w1
i\ī↔ w′

1

w2 = w′
2

if 1 � i � f1 − 1

w1 = w′
1

w2
i−f1\i−f1←→ w′

2

if f1 + 1 � i � f1 + f2 − 1.

Denoted by 	i(w12) the set of all pairs of permutation lattices which are i-coupled to
the pair w12 = (w1, w2) and by 	̄i(w12) the set of all pairs of permutation lattices which are
ī-coupled to the pair w12 = (w1, w2), equations (3.9)–(3.12) can be written as

(〈f1, f2; λ1, λ2;w1, w2|gi |f1, f2; λ1, λ2;w1, w2〉 − 〈f ; λ;w|gi |f ; λ;w〉)
−

∑
u∈	′

i (w)

〈f ; λ;w|gi |f ; λ; u〉〈f ; λ; u|f1, f2; λ1, λ2;w1, w2〉

+
∑

(u1,u2)∈	′
i (w12)

〈f1, f2; λ1, λ2;w1, w2|gi |f1, f2; λ1, λ2; u1, u2〉

×〈f ; λ;w|f1, f2; λ1, λ2; u1, u2〉 = 0 (3.14)

and

(〈f1, f2; λ1, λ2;w1, w2|ei |f1, f2; λ1, λ2;w1, w2〉 − 〈f ; λ;w|ei |f ; λ;w〉)
−

∑
u∈	̄′

i (w)

〈f ; λ;w|ei |f ; λ; u〉〈f ; λ; u|f1, f2; λ1, λ2;w1, w2〉

+
∑

(u1,u2)∈	̄′
i (w12)

〈f1, f2; λ1, λ2;w1, w2|ei |f1, f2; λ1, λ2; u1, u2〉

× 〈f ; λ;w|f1, f2; λ1, λ2; u1, u2〉 = 0, (3.15)

where 	′
i (w) and 	′̄

i
(w) represent the sets 	i(w)\{w} and 	ī(w)\{w}, respectively (and

analogously for 	′
i (w12) and 	′̄

i
(w12)).

By remembering the statement of theorem 1, we can distinguish four possible cases for
the structure of equations (3.14) and (3.15).



5406 V Chilla

(i) Crossing: w
i\ī↔ w and w12

i\ī↔ w12

The subduction equations become of the form given in [18]:

α(i\ī)
w,w12

〈f ; λ;w|f1, f2; λ1, λ2;w1, w2〉 − β(i\ī)
w 〈f ; λ; gi(w)|f1, f2; λ1, λ2;w1, w2〉

+ β(i\ī)
w12

〈f ; λ;w|f1, f2; λ1, λ2; gi(w1), w2〉 = 0

if i ∈ {1, . . . , n1 − 1} , (3.16)

α(i\ī)
w,w12

〈f ; λ;w|f1, f2; λ1, λ2;w1, w2〉 − β(i\ī)
w 〈f ; λ; gi(w)|f1, f2; λ1, λ2;w1, w2〉

+ β(i\ī)
w12

〈f ; λ;w|f1, f2; λ1, λ2;w1, gi(w2)〉 = 0

if i ∈ {n1 + 1, . . . , n − 1} (3.17)

where

α(i\ī)
w,w12

= 1

di(w12)
− 1

di(w)
(3.18)

β(i\ī)
w =

√
1 − 1

d2
i (w)

(3.19)

β(i\ī)
w12

=
√

1 − 1

d2
i (w12)

. (3.20)

Note that, by definition,

di(w12) =
{

di(w1) if 1 � i � f1 − 1

di−f1(w2) if f1 + 1 � i � f − 1,
(3.21)

where the axial distance di is the same as (2.18) and, given a permutation lattice
w = (w1, . . . , wi, wi+1, . . . , wf ), the gi action is naturally defined in the following
way: consider the word w̃ = (w1, . . . , wi−1,wi+1,wi, wi+2, . . . , wf ) obtained by w

interchanging the elements wi and wi+1. If w̃ is another permutation lattice then we
put gi(w) = w̃, otherwise we set gi(w) = w. In an analogous way, a gi action on pairs
of permutation lattices of order f1 and f2, respectively, is defined

gi(w1, w2) =
{
(gi(w1), w2) if 1 � i � f1 − 1(
w1, gi−f1(w2)

)
if f1 + 1 � i � f1 + f2 − 1.

(3.22)

(ii) Horizontal bridge: w
ī↔ w and w12

i\ī↔ w12

In this case, we get the equations

α(i\ī)
w,w12

〈f ; λ;w|f1, f2; λ1, λ2;w12〉 + β(i\ī)
w12

〈λ;w|f1, f2; λ1, λ2; gi(w12)〉

= −
√

PY(w(i))(x)

PY(w(i−1))(x)

∑
u∈	̄i (w)

√
PY(u(i))(x)

♦i (w, u)
〈f ; λ; u|f1, f2; λ1, λ2;w12〉 (3.23)

and ∑
u∈	̄i (w)

√
PY(u(i))(x)〈f ; λ; u|f1, f2; λ1, λ2;w12〉 = 0, (3.24)

where we have used the usual notation w12 = (w1, w2) in the mathematical symbol of
SDC.
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(iii) Vertical bridge: w
i\ī↔ w and w12

ī↔ w12

In an analogous way as the previous case, we have

α(i\ī)
w,w12

〈f ; λ;w|f1, f2; λ1, λ2;w12〉 − β(i\ī)
w 〈λ; gi(w)|f1, f2; λ1, λ2;w12〉

=
√

P
Y(w

(i)
12 )

(x)

P
Y(w

(i−1)
12 )

(x)

∑
u12∈	̄i (w12)

√
P

Y(u
(i)
12 )

(x)

♦i (w12, u12)
〈f ; λ;w|f1, f2; λ1, λ2; u12〉 (3.25)

and ∑
u12∈	̄i (w12)

√
P

Y(u
(i)
12 )

(x)〈f ; λ; u|f1, f2; λ1, λ2;w12〉 = 0. (3.26)

Here, as in the definition of axial distance for pairs of permutation lattices, we have set

♦i (w12, u12) =
{

♦i (w1, u1) if 1 � i � f1 − 1

♦i−f1(w2, u2) if f1 + 1 � i � f − 1
(3.27)

and

w
(i)
12 =

{
w

(i)
1 if 1 � i � f1 − 1

w
(i−f1)

2 if f1 + 1 � i � f − 1.
(3.28)

(iv) Singlet: w
ī↔ w and w12

ī↔ w12

In this last case, the subduction equations take the form

α(i\ī)
w,w12

〈f ; λ;w|f1, f2; λ1, λ2;w12〉 = −
√

PY(w(i))(x)

PY(w(i−1))(x)

×
∑

u∈	̄i (w)

√
PY(u(i))(x)

♦i (w, u)
〈f ; λ; u|f1, f2; λ1, λ2;w12〉

+

√
P

Y(w
(i)
12 )

(x)

P
Y(w

(i−1)
12 )

(x)

∑
u12∈	̄i (w12)

√
P

Y(u
(i)
12 )

(x)

♦i (w12, u12)
〈f ; λ;w|f1, f2; λ1, λ2; u12〉 (3.29)

and√
PY(w(i))(x)

PY(w(i−1))(x)

∑
u∈	̄i (w)

√
PY(u(i))(x)〈f ; λ; u|f1, f2; λ1, λ2;w12〉

=
√

P
Y(w

(i)
12 )

(x)

P
Y(w

(i−1)
12 )

(x)

∑
u12∈	̄i (w12)

√
P

Y(u
(i)
12 )

(x)〈f ; λ;w|f1, f2; λ1, λ2; u12〉. (3.30)

4. Subduction graph

Let us now consider the three shapes (f ; λ; f1, f2; λ1, λ2) with f1 + f2 = f . We call node
each ordered sequence of three permutation lattices (w;w1, w2) such as w1 ∈ �

λ1
f1

, w ∈ �
λ1
f1

and w2 ∈ �
λ2
f2

. We denote it by 〈w;w1, w2〉 or 〈w;w12〉. The set of all nodes of
(f ; λ; f1, f2; λ1, λ2) is called subduction grid (or simply grid) and it is as usual denoted by
G. Building on the case of permutation lattices, the following definition extends the i-coupling
relation to the nodes of the grid.
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Definition 6. Fixed the grid (f ; λ; f1, f2; λ1, λ2), and given two nodes n = (w;w12) and

n′ = (w′;w′
12), we say that n is i-coupled to n′ (or that n and n′ are i-coupled) if w

i↔ w′ and

w12
i↔ w′

12. Then we write n
i↔ n′.

Once i is fixed, it is easy to see that the i-coupling is an equivalence relation on the grid.
We name i-layer the partition of G which is associated with such a relation and we denote it by

G(i). If n and n′ are two distinct nodes of the grid such that n
i↔ n′, then they are connected

by an edge with a label for i.
Following the structure of explicit form for the subduction equations given in the previous

section, we note that there are only four possible kinds of i-layer configurations between nodes
in G:

(i) crossing i-layer: G(i\ī) = {〈w;w12〉 ∈ G|w i\ī↔ w and w12
i\ī↔ w12};

(ii) horizontal bridge i-layer: G(i−ī) = {〈w;w12〉 ∈ G|w ī↔ w and w12
i\ī↔ w12};

(iii) vertical bridge i-layer: G(ī−i) = {〈w;w12〉 ∈ G|w i\ī↔ w and w12
ī↔ w12};

(iv) singlet i-layer: G(ī) = {〈w;w12〉 ∈ G|w ī↔ w and w12
ī↔ w12}.

Clearly, G(i\ī), G(i−ī), G(ī−i) and G(ī) are disjoint sets and we have G(i) = G(i\ī) ∪
G(i−ī) ∪ G(ī−i) ∪ G(ī). The crossing i-layer corresponds to the i-layer defined in [18] for the
subduction problem in symmetric groups. So, crossing, bridge and singlet configurations for
the i-coupling relation are also defined in an analogous way for such a set.

Definition 7. We call subduction graph the overlap of all i-layers obtained by identification
of the corresponding nodes.

The definition just given is a good definition of subduction graph, because there is at most one
edge connecting two distinct nodes. This is ensured by the observation that if n and n′ are two
distinct nodes which are i-coupled and j -coupled then we necessarily have i = j .

We remark that if the grid defined by (f ; λ; f1, f2; λ1, λ2) is such that f is equal to the
number of boxes of λ, f1 is equal to the number of boxes of λ1 and f2 to the number of
boxes λ2, then the definition of subduction graph just given becomes that one given for the
subduction problem in symmetric groups.

5. Structure of the subduction space

The solution of (3.13) can be seen as an intersection of f − 2 subspaces χ(i) such that each
one satisfies


(i)(f1, f2; λ; λ1, λ2)χ
(i) = 0. (5.1)

Here, 
(i)(f1, f2; λ; λ1, λ2) is defined by equations (3.9)–(3.12) written for a fixed i ∈
{1, . . . , f1 − 1, f1 + 1, . . . f − 1}. The definitions of grid, i-layer and the explicit form
for the subduction equations, given in the previous sections, provide a suitable way to
describe the solution space of (5.1) by the one-to-one correspondence between the nodes
of (f1, f2; λ; λ1, λ2) and the SDCs for the subduction [f1 + f2, λ] ↓ [f1, λ1] ⊗ [f2, λ2]. To
find the structure of the subduction space χ(i) which is associated with the i-layer we only
need to describe the structure of the spaces which are associated with G(i\ī), G(i−ī), G(ī−1) and
G(ī) that we call crossing space, horizontal bridge space, vertical bridge space and singlet
space, respectively.
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5.1. Crossing space

The solution for the crossing equations was already described in [18, 24] by the subduction
graph method. In fact, we observe that the structures of the two subduction systems are quite
similar. On the other hand, the irreps of Sf are also the irreps of Bf (x). For the Brauer
algebras case, we only need to pay attention to use the new definition of axial distance given
in (2.18) because such a definition leads to expressions for the coefficients α

(i\ī)
w;w12

, β
(i\ī)
w and

β
(i\ī)
w12 which are algebraic functions of C(x) instead of simple real numbers (see theorem 1).

However, relations and conditions of the subduction graph method for symmetric groups still
remain valid for the Brauer algebras subduction issue.

5.2. Bridge spaces

Let us now consider the case of the horizontal bridge space. From equation (3.24), for
each node 〈w;w12〉 ∈ G(i−ī), we find that subduction coefficients of the horizontal bridge
type 〈f ; λ; u|f1, f2; λ1, λ2;w12〉 are the components of vectors of a vectorial space that is
the kernel of the operator ei acting on the invariant irreducible subspace defined by all the
permutation lattices u which are ī-coupled to w. From the relation e2

i = xei , we note that the
eigenvalues of ei are 0 and x. Therefore χ(i−ī) in general is not the trivial space. So, finding
such SDCs is equivalent to determining the kernel space of ei in the explicit form given in
theorem 1.

Once we know the SDCs of the form 〈f ; λ; u|f1, f2; λ1, λ2;w12〉, we can determine the
coefficients 〈f ; λ; u|f1, f2; λ1, λ2; gi(w12)〉 by using (3.23):

〈f ; λ; u|f1, f2; λ1, λ2; gi(w12)〉 = −α
(i\ī)
w,w12

β
(i\ī)
w12

〈f ; λ;w|f1, f2; λ1, λ2;w12〉

− 1

β
(i\ī)
w

√
PY(w(i))(x)

PY(w(i−1))(x)

∑
u∈	̄i (w)

√
PY(u(i))(x)

♦i (w, u)
〈f ; λ; u|f1, f2; λ1, λ2;w12〉 (5.2)

(note that if gi(w12) 
= w12 then β
(i\ī)
w12 
= 0).

In an analogous way for the vertical bridge space, from equation (3.26) we find that
subduction coefficients 〈f ; λ;w|f1, f2; λ1, λ2; u12〉 are the components of vectors of a
vectorial space that is the kernel of the operator ei acting on the invariant irreducible subspace
defined by all pairs of the permutation lattices u12 which are ī-coupled to w12.

Again, once we know the SDCs of the form 〈f ; λ;w|f1, f2; λ1, λ2; u12〉, we can determine
the coefficients 〈f ; λ; u|f1, f2; λ1, λ2; gi(w12)〉 by using (3.25):

〈f ; λ;w|f1, f2; λ1, λ2; gi(u12)〉 = α
(i\ī)
w,w12

β
(i\ī)
w

〈f ; λ;w|f1, f2; λ1, λ2;w12〉

− 1

β
(i\ī)
w

√
P

Y(w
(i)
12 )

(x)

P
Y(w

(i−1)
12 )

(x)

∑
u12∈	̄i (w12)

√
P

Y(u
(i)
12 )

(x)

♦i (w12, u12)
〈f ; λ;w|f1, f2; λ1, λ2; u12〉

(5.3)

(if gi(w) 
= w then β
(i\ī)
w 
= 0).
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5.3. Singlet space

To understand the structure of the solution for singlet equations, it is useful to introduce the
intertwining operators:


(i)
w,w12

= Iw ⊗ ρ(i)
w12

− ρ(i)
w ⊗ Iw12 (5.4)

and


̄(i)
w,w12

= Iw ⊗ ρ̄(i)
w12

− ρ̄(i)
w ⊗ Iw12 . (5.5)

Here, ρ(i)
w (resp. ρ(i)

w12
) represents the action of the generators gi on the invariant irreducible

module defined by all permutation lattices (resp. pairs of permutation lattices) which are
ī-coupled to w (resp. w12). In an analogous way, ρ̄(i)

w (resp. ρ̄(i)
w12

) represents the action of the
generators ei on the invariant irreducible modules defined by all permutation lattices (resp.
pairs of permutation lattices) which are ī-coupled to w (resp. w12). Furthermore, Iw and Iw12

represent the identity operators on the previous invariant irreducible modules, respectively.
Solving the singlet equations is equivalent to finding the kernel space of 
(i)

w,w12
and the kernel

space of 
̄(i)
w,w12

.
The operator ρ(i)

w (resp. ρ(i)
w12

) has eigenvalues 1 and −1, as we can see by the relation

g2
i = 1. Denoted by g

(i)
w,1 (resp. g

(i)
w12,1

) an eigenvector relative to the eigenvalue 1 and by

g
(i)
w,−1 (resp. g

(i)
w12,−1 ) that relative to the eigenvalue −1, the eigenvectors of the intertwining

operator 
(i)
w,w12

are

(i) g
(i)
w,1 ⊗ g

(i)
w12,1

with eigenvalue 0,

(ii) g
(i)
w,−1 ⊗ g

(i)
w12,1

with eigenvalue 2,

(iii) g
(i)
w,1 ⊗ g

(i)
w12,−1 with eigenvalue −2,

(iv) g
(i)
w,−1 ⊗ g

(i)
w12,−1 with eigenvalue 0.

Therefore, the kernel space is given by
(
g

(i)
w,1 ⊗ g

(i)
w12,1

, g
(i)
w,−1 ⊗ g

(i)
w12,−1

)
.

The operator ρ̄(i)
w (resp. ρ̄(i)

w12
) has eigenvalues x and 0 (remember that ei

2 = xei). Denoted

by e(i)
w,x (resp. e(i)

w12,x
) an eigenvector relative to the eigenvalue x and by e

(i)
w,0 (resp. e

(i)
w12,0

) that
relative to the eigenvalue −1, the eigenvectors of the intertwining operator 
(i)

w,w12
have the

form

(i) e(i)
w,x ⊗ e(i)

w12,x
with eigenvalue 0,

(ii) e
(i)
w,0 ⊗ e(i)

w12,x
with eigenvalue x,

(iii) e(i)
w,x ⊗ e

(i)
w12,0

with eigenvalue −x,

(iv) e
(i)
w,0 ⊗ e

(i)
w12,0

with eigenvalue 0,

from which we can construct the kernel space for 
̄(i)
w,w12

.
The singlet space is the intersection of the two kernel spaces just given.

6. Orthonormalization and phase conventions

The subduction space given by (3.13) has dimension µ equal to the multiplicity of
[f, λ] ↓ [f1, λ1] ⊗ [f2, λ2]. Then SDCs are not univocally determined. A choice of
orthonormality between the different copies of multiplicity imposes a precise form on the
multiplicity separations.
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Following the notation given in [18], let {χ1, . . . , χµ} be a basis in the subduction space.
Orthonormality implies for the scalar products:

(χη, χη′) = dim
(
Bf1(x), [f1, λ1]

)
dim

(
Bf2(x), [f2, λ2]

)
δηη′ . (6.1)

If we denote by χ the matrix which has the basis vectors of the subduction space as columns,
we may orthonormalize it by a suitable µ × µ matrix σ , i.e.,

χ̃ = χσ. (6.2)

In (6.2) χ̃ is the matrix which has the orthonormalized basis vectors of the subduction space
as columns. Now we can write (6.1) as

σ tτσ = I, (6.3)

where I is the µ × µ identity matrix and τ is the µ × µ positive defined quadratic form given
by

τ = 1

dim
(
Bf1(x), [f1, λ1]

)
dim

(
Bf2(x), [f2, λ2]

)χtχ. (6.4)

From (6.3) we can see σ as the Sylvester matrix of τ , i.e., the matrix for the change of basis
that reduces τ in the identity form. We can express σ in terms of the orthonormal matrix Oτ

that diagonalizes τ

σ = OτD
− 1

2
τ O, (6.5)

where D
− 1

2
τ is the diagonal matrix with eigenvalues given by the inverse square root of

the eigenvalues of τ and O a generic orthogonal matrix. Thus, the general form for the
orthonormalized χ is

χ̃ = χOτD
− 1

2
τ O. (6.6)

We note that in the case of multiplicity-free subduction, only one choice of global phase has
to be made (for example Young–Yamanouchi phase convention [25]). It is derived from the
trivial form of the orthogonal 1 × 1 matrices O and Oτ .

To fix the Young–Yamanouchi phase convention we need an ordering relation on
permutation lattices (or pair of permutation lattices) and on nodes of the subduction graph. A
possible natural choice is the following: given two distinct permutation lattices of order f and
diagram λ, w = (w1, w2, . . . , wf ) and w′ = (w′

1, w
′
2, . . . , w

′
f ), we say that w < w′ if the

first non-zero element of the word w − w′ = (w1 − w′
1, w2 − w′

2, . . . , wf − w′
f ) is a negative

number. Such a relation can be extended to pairs of permutation lattices alphabetically: given
two distinct pairs of permutation lattices w12 = (w1, w2) and w′

12 = (w′
1, w

′
2), we say that

w12 < w′
12 if w1 < w′

1 or w1 = w′
1 and w2 < w′

2. Resulting from the previous ordering
relations, we can provide the ordering relation for nodes of the grid G = (f ; λ; f1, f2; λ1, λ2).
For two distinct nodes n = 〈w;w12〉 ∈ G,n′ = 〈w′;w′

12〉 ∈ G we say n < n′ if w < w′ or
w = w′ and w12 < w′

12.
Thus, the Young–Yamanouchi phase convention can be stated as follows: we fix to

be positive the first non-zero SDC with respect to the ordering relation defined on the
corresponding nodes.

We conclude by observing that, in the general case of multiplicity µ > 1, 2µ−1 phases
deriving from the Oτ matrix and 1 phase from the matrix O have to be fixed. Therefore
we have to choose 2µ−1 + 1 phases. Furthermore, we have other µ(µ−1)

2 degrees of freedom
deriving from O. In summary, as in the case of the symmetric group subduction problem, we
have to make a total of (2µ−1 + 1) + µ(µ−1)

2 choices.
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7. Outlooks

There are at least three possible interesting developments for this paper.
First, one can directly apply the algebraic and combinatoric approach outlined in this

paper to Racah–Wigner calculus for quantized enveloping algebras. In fact, centralizer
algebras (i.e. Birman–Wenzl and type A Iwahori–Hecke algebras) for quantized enveloping
algebras are well characterized both from the algebraic and combinatorial point of views and
for the explicit construction of their irreducible representations [21]. Thus, the linear equation
method described in terms of subduction graph can be directly applied to this issue without
any particular difficulty.

Second, Racah–Wigner calculus for projective representations of classical Lie groups is
very useful in many situations. For example, it is often necessary when one has to describe
the states of physical systems involving fermions. Finding such representations is equivalent
to determining the tensorial irreducible representations of the universal enveloping group of
the original Lie group G. An alternative approach is to find the projective representations of
Brauer algebras. The Gelfand–Tzetlin basis for such representations is described in terms
of combinatorial objects which are known as stable-up-down tableaux [26] (they are
permutation lattices with null elements, in the language of this paper). Unfortunately, the
explicit action on the irreducible modules is still unknown.

Finally, exceptional Lie groups also have many applications both in physics and
mathematical physics and the study of their centralizer algebras would be important for a
comprehensive knowledge of the Racah–Wigner calculus for all Lie groups.
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